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This work presents the application of nonlinear model predictive control (NMPC) to a simulated industrial
batch reactor subject to safety constraint due to reactor level swelling, which can occur with relatively
fast dynamics. Uncertainties in the implementation of recipes in batch process operation are of sig-
nificant industrial relevance. The paper describes a novel control-relevant formulation of the excessive
liquid rise problem for a two-phase batch reactor subject to recipe uncertainties. The control simulations
are carried out using a dedicated NMPC and optimization software toolbox OptCon which implements
ultiphase reactors
rocess control
ultiphase flow
ptimization
ynamic simulation

efficient numerical algorithms. The open-loop optimal control problem is computed using the multiple-
shooting technique and the arising nonlinear programming problem is solved using a sequential quadratic
programming (SQP) algorithm tailored for large-scale problems, based on the freeware optimization envi-
ronment HQP. The fast response of the NMPC controller is guaranteed by the initial value embedding and
real-time iteration technologies. It is concluded that the OptCon implementation allows small sampling
times and the controller is able to maintain safe and optimal operation conditions, with good control

ifican
performance despite sign

. Introduction

Reactor or evaporator content swelling phenomena can lead to
ignificant productivity losses if this phenomenon is not considered
uring process operation and is regarded as a reactor productiv-

ty and safety problem. Reactor content swelling occurs when the
essel content level rises due to a gas or vapor stream that passes
hrough the liquid (Fig. 1). Vapor flow occurs in a reactor when the
eaction produces a gas phase product or during direct steam heat-
ng when some of the steam does not condense and disengages to
he top of the vessel.

As a result of the swelling phenomena reaction mass enters the
ipes and the condensers connected to the reactor. As a conse-
uence of such undesired events reactor shut-down is mandatory
nd production time is lost for cleaning operations. The pipe and
ondenser cleaning is carried out by charging solvent which is evap-
rated and condensed for a certain time (refluxing conditions). The

ff-line optimal temperature control of batch reactors with regard
o swelling was subject of investigation by Simon et al. [1]. Similarly
o the batch reactors, reboiler liquid swelling may also occur during
he operation of low-pressure batch distillation processes [2].

∗ Corresponding author. Tel.: +41 44 6334486; fax: +41 44 6321189.
E-mail address: levente.simon@chem.ethz.ch (L.L. Simon).
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t uncertainties in the implementation of the batch recipe.
© 2009 Elsevier B.V. All rights reserved.

Since the advent of dynamic matrix control (DMC), model pre-
dictive control (MPC) has been the most popular advanced control
strategy in the chemical industries [3]. Linear MPC has been her-
alded as a major advance in industrial process control [4]. However,
due to their nonstationary and highly nonlinear nature, linear
model based control usually cannot provide satisfactory perfor-
mance in the case of complex batch processes [5]. Nonlinear model
predictive control (NMPC) reformulates the MPC problem based
on nonlinear process models, providing the advantage to cope
inherently with process nonlinearities [6,7] characteristic to batch
systems. Recent developments in the field of real-time optimiza-
tion use the feedback information to adapt the constraints of the
optimization problem instead of updating the model parameters
[8]. On-line optimization and integration of extended Kalman filter
based estimation was shown to be an effective way to increase pro-
ductivity of exothermic batch reactors [9]. Recent predictive control
formulations that explicitly account for process nonlinearities and
do not require the traditional assumption of initial feasibility of
the optimization problem are presented by Refs. [10,11]. Zavala and
Biegler proposed the advanced-step NMPC controller to reduce the
on-line computational effort via the reformulation of the NMPC

problem [12]. New challenges related to the optimal transition from
batch to continuous processing of bio-reactors, are handled using
a nonlinear model predictive controller to ensure the constraints
satisfaction and performance targets [13]. Although not consid-
ered in this paper robust formulations that incorporate parameter

http://www.sciencedirect.com/science/journal/13858947
http://www.elsevier.com/locate/cej
mailto:levente.simon@chem.ethz.ch
dx.doi.org/10.1016/j.cej.2009.06.003
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Nomenclature

Latin symbols
cModel

Hydro
vector of hydrodynamic model specific constants
and parameters

cModel
R vector of reactor model specific constants and

parameters
dn vector of accumulation or consumption rates of all

components (kmol/s)
ECat catalyst deactivation reaction activation energy

(kJ/kmol)
EA,i activation energies (kJ/kmol)
f hydrodynamic model constant
FCat catalyst dosing rate (kmol/s)
G set of dynamic equations and set of equality con-

straints
H swelled vessel height (m)
H0 height of the resting liquid (m)
Hmax maximum reactor level (m)
Hydro hydrodynamic model
jg vapor superficial velocity (m/s)
K hydrodynamic model constant
Kc dynamic controller gain
k discretization interval
kCat rate constant at reference temperature

(m3/(kmol s))
ki

ref
rate constants at reference temperature

(m6/(kmol2 s))
M objective function
nA, nB, nC, nD, nE, nF, nP, nW mole number of component A, B,

C, D, E, F, P, W (kmol)
N number of intervals
R gas constant (kJ/(kmol K))
rCat catalyst deactivation rate (kmol/(m3 s))
�n set of inputs, states, outputs
ri
R ith reaction rate to the right-hand side (kmol/(m3 s))

T reactor temperature (◦C)
Tref reference temperature (◦C)
tf final time (s)
U∞ characteristic bubble rise velocity (m/s)
u input
V reactor mass volume (m3)
Vg average local slip velocity (m/s)
x states
x̄ predicted state
y output

Greek letters
¯̨ pool void fraction
�L liquid density (kg/m3)
�V vapor density (kg/m3)
� path term
� surface tension (N/m)

Superscripts
1 Reaction 1
2 Reaction 2
3 Reaction 3
4 Reaction 4

Subscripts
Cat catalyst
i ith reaction step
ref reference
Fig. 1. Swelled liquid in a 100 L pilot plant vessel.

uncertainties in the control problem formulation are also available
[14,15], and their application for the case of recipe uncertainties rep-
resents an interesting future research problem due to its relevance
to the industrial batch processes operations.

Typically, the dynamics of the systems encountered during the
processing of chemicals such as reactions, separations are relatively
slow, with time constants of the order of minutes. The novelty of
the paper is that it illustrates the benefits of application of an effi-
cient on-line optimizing nonlinear model based control approach
to a chemical process with fast dynamics, a reactive-hydrodynamic
system. The model based control approach is justified by the time
varying nature of the batch process, by the nonlinearities due to
the chemical system and the necessity of constraint handling. The
on-line strategy is required to accommodate the reaction rate dis-
turbances which arise due to catalyst dosing uncertainties (catalyst
mass and feed time). The optimization problem is implemented in
a user-friendly software package, OptCon [16,17].

2. Process operation and models

The system considered in this study is based on a proprietary
industrial batch process, for which the model has been developed
and identified. The catalyst used in the chemical reaction decom-
poses in the reaction mixture; therefore it is fed several times
during the process operation. The first catalyst dosing takes place at
the beginning of the operation, later the catalyst shots are added as
the reaction rate decreases. This type of process operation is often
used in the industrial practice. The process is characterized by sig-
nificant uncertainties in the kinetic constants and in the addition
time of the catalyst. Fig. 2 shows the experimental reaction rate
measurements (normalized data) from the real industrial plant,
in the case of repeated application of the same operating recipe
with two consecutive catalyst dosing. The significant bath-to-batch
variation may lead to safety problems and sub-optimal operation.

The process recipe is optimized off-line by calculating the cata-
lyst dosing time and mass, and the optimal pressure profile which

ensures that the liquid level is at the setpoint. However, the off-line
calculated optimal pressure profile does not ensure safe operation
in the case of disturbances in the catalyst feeding policy. Instead, an
on-line strategy is needed to adjust the pressure profile during the
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Fig. 2. Change of the reaction rate in time for an existing batch process.

peration considering the unknown disturbances. The control strat-
gy used here is based on the nonlinear model predictive control
NMPC) framework for batch processes.

.1. Batch reactor modeling

Four equilibrium reactions in series take place in the liquid phase
nd a catalyst is used in dissolved form. The reaction scheme is as
ollows:

+ B
k1

ref−→C + D (1)

+ C
k2

ref−→E + D (2)

+ E
k3

ref−→F + D (3)

+ F
k4

ref−→P + D (4)

+ Catalyst
kCat−→W (5)

Raw materials are component A and B, while C, E, F are interme-
iates, P is the desired product and W is the decomposed catalyst.
he goal of the process operation is to remove the co-product D
rom the liquid phase as fast as possible to shift the equilibrium
eactions to the product side. Product D is in vapor phase at the
emperature and pressure conditions in the reactor, and the pro-
uction of the co-product D creates a vapor flow that travels to the
eaction mass surface and produces a certain void fraction in the
iquid mass. The extent of the void fraction is dependent on the liq-
id properties and vapor hold-up in liquid phase which in turn are
ependent on the vapor flow rate and implicitly on the formation
ate of gas co-product D.

By operating at low-pressure conditions, the amount of D in
iquid phase is minimized, thus the reverse reactions are not sig-
ificant. Although the reaction system is characterized by chemical
quilibrium, the chemical model is based only on forward reactions
hich ensure a safety back-off in the model. The true reaction rates
ill never be faster than the forward reactions.In order to model

he forward reactions the Arrhenius formulation is implemented,
sing a reference reaction constant determined at a reference tem-
erature [18]:

i
R = ki

ref exp

{
−EA,i

R

(
1
Tr

− 1
Tref

)}
nCatnBnX

V3
(6)

{ ( )}

Cat = kCat exp −ECat

R

1
Tr

− 1
Tref

nCatnB

V2
(7)

here i is the ith reaction step, ri
R is the ith reaction rate to the

ight-hand side (kmol/(m3 s)), rCat is the catalyst deactivation rate,
g Journal 153 (2009) 151–158 153

ki
ref

are the corresponding rate constants at reference tempera-

ture (m6/(kmol2 s)), kCat is the catalyst deactivation rate constant
at reference temperature (m3/(kmol s)), EA,i the activation energies
(kJ/kmol), ECat the catalyst deactivation reaction activation energy
(kJ/kmol), Tr and Tref are the current and reference temperature
(K), R is the gas constant (kJ/(kmol K)), nB is the mole number of
component B (kmol), nCat is the catalyst mole number (kmol), nX

represents nA, nC, nE and nF (kmol), respectively, and V is the volume
of the reaction mass (m3). During the reaction the volume changes
significantly, therefore V is a variable in the model. The reaction
volume is not constant due to two factors: on one hand there is
the removal of by-product D and on the other hand the density of
the mixture changes. These two effects contribute each with about
10% volume change. The reaction volume at any time is calculated
as a function of the densities and masses of all components in the
mixture thus accounting for the removal of co-product D and the
change in composition. The resulting component mass balances for
the liquid phase are as follows:

dnA

dt
= −r1

RV (8)

dnB

dt
= (−r1

R − r2
R − r3

R − r4
R − rCat)V (9)

dnC

dt
= (r1

R − r2
R )V (10)

dnD

dt
= (r1

R + r2
R + r3

R + r4
R )V (11)

dnE

dt
= (r2

R − r3
R )V (12)

dnF

dt
= (r3

R − r4
R )V (13)

dnP

dt
= r4

RV (14)

dnCat

dt
= −rCatV + FCat (15)

where FCat is the catalyst dosing rate (kmol/s). In a previous work the
mass of component D in liquid phase during boiling under vacuum
was inferred using a hybrid black-box model [19].

2.2. Void fraction modeling

In order to describe the effect of liquid swelling the pool void
fraction is used. The swelled height H (m) in terms of the average
pool void fraction ¯̨ and the height of the resting liquid H0 (m) is
given by the following equation:

H = H0

1 − ¯̨
(16)

Wilson et al. [20] determined the void fraction ¯̨ by bubbling steam
through water in a pressurized vessel in the 20–40 bar pressure
range. Their proposed empirical correlation is presented below:

¯̨ = K
(

�V

�L − �V

)0.17
[√

�

g(�L − �V )
/Dreb

]0.1

[
jV /

(
g

√
�

g(�L − �V )

)0.5
]f

(17)
with

K = 0.68, f = 0.62 for jV /

(
g

√
�

g(�L − �V )

)0.5

< 2 (18)
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(7) go back to step (4), and repeat until the end of batch.
Fig. 3. Void fraction prediction using the Wilson model [25].

= 0.88, f = 0.40 for jV /

(
g

√
�

g(�L − �V )

)0.5

≥ 2 (19)

here �L and �V (kg/m3) are the liquid and vapor densities, � (N/m)
s the surface tension, g (m/s2) is the gravitational acceleration, Dreb
m) is the reboiler vessel diameter and jV (m/s) is the superficial
apor velocity, K and f are model specific constants. The compar-
son of the void fraction predictions as a function of the gas flow
ate using the four hydrodynamic models is discussed in Simon et
l. [2]. It is concluded that, at 1 bar pressure, the Wilson and Churn
urbulent [21] and Sterman models [22] show similar behavior, and
he Kataoka–Ishii model [23] predicts larger void fractions. The four
ydrodynamic models were compared at 0.25 bar pressure as well;
he comparison results show that the Wilson and Churn turbulent

odel predictions are similar, while the Sterman and Kataoka–Ishii
odels predict larger void fractions. It is interesting to note that

he Wilson model was successfully extrapolated by Wiss et al. [24]
without refitting the model parameters) from about 20–40 bar
ressure to 1 bar. To the authors’ knowledge void fraction corre-

ations identified under vacuum conditions are not available in the
iterature, therefore experiments within 0.1 and 0.8 bar were car-
ied out [25]. It was found that at 0.1 bar, the Wilson model predicts
orrectly the void fraction values up to 10–15%, as shown in Fig. 3. In
onclusion, the Wilson model is a good choice for pool boiling mod-
ling under vacuum conditions, thus it is used in the model applied
n the current calculations. For the in situ, laboratory scale mon-
toring of hydrodynamic conditions endoscopy assisted by digital
mage processing can be a useful approach [26,27].

. On-line optimizing control for swelling constrained
atch reactor

The on-line optimizing control for a model represented by
generic ordinary-differential equation (ODE) system can be

xpressed as follows:

˙ (t) = f (x(t), u(t)) (20)

(t) = g(x(t), u(t)) (21)

ubject to the input, state and output constraints

(t) ∈ U, x(t) ∈ X, y(t) ∈ Y (22)

here x(t) is the nx vector of states, u(t) is the nu set of input vector
rajectories and y(t) is the n vector of output variables. The sets X
y

nd Y are closed subsets of �nx and �ny , respectively and the set U
s a compact subset of �nu . If we suppose that the full state x can be

easured, then in the batch NMPC [16,17] the control input applied
o the system in the interval [tk, tf] is given by the repeated solution
Fig. 4. The concept of shrinking horizon NMPC strategy.

of the finite horizon optimal control problem given by:

min
ū(·)

{
M(x(tf )) +

∫ tF

tk

� (x̄(t), ū(t)) dt

}
(23)

s.t. ˙̄x(t) = f (x̄(t), ū(t), x̄(tk) = x(tk))
ū(t) ∈ U, ∀t ∈ [tk, tf ]
x̄(t) ∈ X, ∀t ∈ [tk, tf ]
ȳ(t) ∈ Y, ∀t ∈ [tk, tf ]

(24)

where the objective function has the generic form, which consists
of the end-point objective (M) and a path term (� ), tk denotes the
sampling instance, tf is the batch time and tF ≤ tf is the prediction
horizon for the running term, and � is the model time. A schematic
representation of the principle of batch NMPC is given in Fig. 4.
Although in the case of typical batch NMPC only the end-point
objective is considered, based on the nature of the control objective
in practical cases often either one or both terms may be incorpo-
rated in the actual objective function. When tF = tf the optimization
is performed on a shrinking horizon, whereas if tF ≤ tf initially the
problem is solved on a combination of shrinking and moving hori-
zon until tk + tF < tf after which on shrinking horizon. The bar in the
optimization problem denotes the predicted variables, i.e. x̄ denotes
the solution of the system driven by the input ū with the initial
condition x(tk). Even if in the case of shrinking horizon NMPC in
the nominal case the real state x of the system coincides with the
predicted state x̄, it is necessary to make a distinction between the
two due to differences which occur due to uncertainties in model
parameters, inputs and disturbances.

The repeated optimization problem is solved by formulating a
discrete form, that can be handled by conventional solvers [28]. The
batch time t ∈ [0, tf] is divided into N equally spaced time intervals
�t (stages), with discrete time steps tk = k�t, and k = 0, 1,. . ., N. The
main idea of the shrinking horizon on-line control algorithm (batch
NMPC) is shown in Fig. 4 and is summarized as follows:

(1) with known initial conditions, discretize batch time in N inter-
vals;

(2) optimize property at the end of the batch;
(3) implement calculated input for the first control interval;
(4) initialize optimization with states taken at the end of time inter-

val k;
(5) re-optimize property at the end of the batch, having N − 1 deci-

sion variables in the optimal control problem;
(6) implement the first control input;
The solution of the optimization problem is implemented in a ded-
icated NMPC tool, OptCon [16]. In particular, the NMPC is based on
first-principles or grey box models, and the problem setup can be
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the operation of the batch reactor there is an uncertainty regard-
ing the catalyst mass and dosing time which causes significant level
increase and sub-optimal operation. Furthermore, Fig. 6b shows the
Fig. 5. The OptCon structure.

one in Matlab. The NMPC approach is based on a large-scale NLP
olver (HQP) [17,29] which offers an efficient optimization environ-
ent, based on multiple-shooting algorithm [30,31], that divides

he optimization horizon into a number of subintervals (stages)
ith local control parameterizations. The differential equations on

hese intervals are integrated independently during each optimiza-
ion iteration. The continuity/consistency of the state trajectory
t the end of the optimization is enforced by adding consistency
onstraints to the nonlinear programming problem. The basic com-
onents of the software package and the working mechanism are
hown in Fig. 5. The software consists of a collection of ODE/DAE
olvers, SQP solvers, QP solvers, matrix solver for the solution of
he Karush–Kuhn–Tucker (KKT) condition and various methods for
essian update, all compiled together in a dynamically link library

dll). The model has to be implemented as a standard Matlab mex
unction using C language and compiled also as a dll. Communi-
ation between the optimization functions and model function is
erformed via the open source TCL shell in a client/server struc-
ure. Communication functions and high level configuration and
MPC functions are developed in Matlab so that the structure of

he package is completely transparent to the user. The user only
nteracts with the functions in Matlab and sets up the optimiza-
ion, parameter and/or state estimation, and NMPC problems using
he Matlab interface. The NMPC and estimation functions in Opt-
on are designed using a special real-time scheme and the software
lso offers the possibility to be connected to real distributed control
ystems (DCS) through OPC communication.

Hence OptCon provides an efficient environment for rapid pro-
otyping of NMPC strategies even in an industrial environment and
as been successfully used in a variety of practical applications [17].

. Results and discussion

.1. Open-loop optimal control of the swelling constrained batch
eactor
The most widely used optimization method to improve the batch
rocesses is the formulation and solution of an optimal control
roblem [32]. The open-loop optimization problem corresponds to
he first optimization step in the batch NMPC algorithm described
n the previous section. In this approach the objective is to improve
g Journal 153 (2009) 151–158 155

an end-point criteria by calculating a time variant input variable
profile (temperature, pressure, feed rate).

Since the reactions are chemical equilibrium limited it is impor-
tant that the pressure in the reactor is the lowest possible. However,
minimum reactor pressure yields maximum gas volume and even-
tually maximum liquid level, thus this limitation has to be taken
into account during the calculation of the pressure profile. Although
it is plausible to control the cause of the vapor formation (reaction
kinetics) using the temperature, in practice this is not possible due
to the slow dynamics of temperature change in large-scale reactors.
Instead, from practical point of view, it is more feasible to control
the true level by means of the pressure. For this case study the tem-
perature ramp is set to 1 ◦C/min. The temperature is an additional
state in the model and it is not considered as a disturbance in the
system, however the pressure re-optimization takes into account
possible changes, as it affects the reaction rate, the vapor velocity
and the true level.

The optimization of the batch reactor with regard to swelling can
be regarded as a problem to determine the pressure profile which
will not cause the level to rise over a maximum value. The objective
function is to maximize the component B depletion or to minimize
the content of component B at final time, the control variable is
the pressure, and the final simulation time is fixed to 40 min. The
inequality path constraint is the formation rate of co-product D
converted in true reactor content level. The optimal control problem
for this process is formulated as follows:

M = min
P(t)

∫ tf

0

P(t) dt (25)

Subject to:

g(Rdae(ẋ, x, T, vR, cModel
R ), Hydro(ẋ, T, P, vR, cModel

Hydro ), tf , t) = 0 (26)

Hmax − Hr(t) ≥ 0 (27)

Pmax − P(t) ≥ 0 (28)

P(t) − Pmin ≥ 0 (29)

where tf is the final time (end of the optimization) at which it is
considered that swelling cannot occur anymore (not yet the end of
the reaction), P is the pressure proposed by the optimizer, Rdae is
the kinetic model, vR is the vector of reaction mass specific con-
stants, cModel

R is the vector of reaction model specific parameters,
Hydro is the hydrodynamic model, cModel

Hydro
is the vector of hydrody-

namic model specific constants and parameters, Hmax (2.4 m) and
Hr (t) are the maximum level and calculated reactor content level,
respectively, and Pmax (1 bar) and Pmin (0.075 bar) are the maximum
and the minimum pressures, respectively. The objective function
is expressed as the integral of the pressure profile over the batch
time. This formulation guaranties that the maximum level is not
exceeded while the pressure is kept at the minimum possible level,
which indirectly maximizes productivity. Fig. 6a shows the open-
loop optimal pressure profile and Fig. 6b the calculated reactor
level. The pressure increases due to the catalyst feeding proce-
dure which takes place during short periods at time steps 0, 15, 25,
35 min during which the reaction rate increases. However, during
true reactor level in case when the catalyst is dosed 3 min earlier
compared to the recipe and also considering that 20% more mass is
added. The sampling time is 20 s. In the industrial practice the pres-
sure increase for processes operated under vacuum is implemented
by opening a valve placed before the vacuum pump.
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Fig. 7. Pressure profile (a) and the corresponding reactor level for an early addition
disturbance case. Catalyst dosing at 12 min, 22 min and 32 min.

problems with the level constrained at 2.3 m. Using a model which
under predicts the level the optimizer will try to lower the pressure
to a higher extent compared to the prediction which is based on an
accurate model. For low pressures the effect of plant–model mis-
ig. 6. Open-loop calculated pressure profile (a) and the corresponding reactor level
b), straight lines; dashed line shows the reactor level according to the disturbed
onditions. Catalyst dosing at 15 min, 25 min and 35 min.

.2. On-line re-optimizing control of the swelling constrained
atch reactor

In order to cope with the disturbance of the chemical system
shrinking horizon, re-optimizing model based control strategy

s implemented. The optimal control problem defined by Eqs.
25)–(29) is solved repeatedly considering a state feedback formu-
ation. This assumption is used since in practice the concentrations
states) are measurable with spectroscopy based techniques such as
nfrared (IR) and ultra-violet visible (UV/vis) spectroscopy [33]. The

easured spectra are previously calibrated to known concentration
amples using partial-least squares (PLS) models.

Besides the states presented in Eqs. (8)–(15), further states for
he temperature, total dosed catalyst mass, mass of component B
onsumed in the main reaction and a state for the pressure inte-
ral have been included. The size of the first NLP is 1560 variables
hich is calculated as follows: the batch time is 2400 s and with
20 s sampling time leads to 120 discretization intervals. Since in

he multiple-shooting scheme the control variables and the states
re discretized the number of unknowns in the NLP is given by
20 × 12 + 120. The first open-loop optimization is completed in
bout 10 s and 13 QP iterations (relative integration error: 1e−3;
bsolute integration error: 1e−6). After each re-optimization the
LP size decreases with 13 variables. Subsequent optimizations,
hen disturbances are not present, are carried out in about 1–2 s

nd 2 QP iterations since the NLP is initiated from the previous opti-
ization results. The calculations were carried out using an Intel

entrino vPro processor at 2.5 MHz frequency with 4GB installed
andom access memory (RAM) on a Windows XP operation system.

The level control results for the case when the catalyst is fed
min earlier and 20% more mass than specified by the recipe is
resented in Fig. 7. Due to the small sampling time the controller is
ble to accommodate the change of vapor rate and it maintains the
evel at the maximum level. In this case the information contained
n the original recipe is not used by the model during the open-loop
ptimization, since the catalyst dosing is expected later.

Further simulations deal with the case when the catalyst is fed
elayed and with 20% more mass as set in the recipe. Fig. 8 presents
he case when the catalyst feed is delayed 3 min. Similarly to the
revious case the level control is good despite the disturbance in
he recipe.

In order to analyze the effect of the recipe information on the

rocess control behavior a scenario was simulated in which the cat-
lyst feeding time is delayed 30 s (the catalyst feeding takes 1 min).
his way it is expected that the controller has information about
he dosing time in the open-loop optimization. This expectation is
onfirmed in Fig. 9b, where it is observed that the level is lower
Fig. 8. Pressure profile (a) and the corresponding reactor level for a late addition
(with 3 min) disturbance case. Catalyst dosing at 18 min, 28 min and 38 min.

within the first sampling time.
In order to verify the influence of the model–plant mismatch,

a slower, thus conservative model was used. In the kinetic model
the activation energies were increased by 30% and the prediction of
the hydrodynamic model was decreased by 30%. This way the true
level height is under predicted. The simulation results considering
early catalyst feeding (3 min sooner) and the model discussed above
are presented in Fig. 10. An offset compared to the maximum level
is observed, which can be decreased by running the optimization
Fig. 9. Pressure profile (a) and the corresponding reactor level for a late addition
(with 30 s) disturbance case (b). Catalyst dosing at 15.5 min, 25.5 min and 35.5 min.
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ig. 10. Pressure profile (a) and the corresponding reactor level (b) for an early
ddition (with 3 min) disturbance case, using a model with significant model–plant
ismatch. Catalyst dosing at 12 min, 22 min and 32 min.

atch is controlled by the lower bound on the pressure which is
he control variable. As shown in the results presented above using
mall sampling time the control performance is good.

There are cases when the NMPC strategy may not allow the
mplementation of small sampling time control actions. In these
ases the open-loop formulation of the NMPC control problem,
ccording to which the NMPC control actions are applied in an
pen-loop way between the NMPC sampling instances, may not
rovide acceptable results. During the open-loop control period a
isturbance may lead to the rapid rise of the reactor level and hence
o the violation of safety constraint. In these cases a closed-loop
MPC can be implemented. According to this strategy the opti-
ization repeatedly finds a feedback law rather than an open-loop

rofile. The simplest control law is a linear output feedback level
ontroller,

(t) = Kc(k)(Hset − H(t)) (30)

here Kc(k) is the dynamic controller gain which is fixed on a
iscretization interval and is the result of the closed-loop NMPC
ptimization problem [34]. This control strategy is based on reliable

evel sensors which provide reliable level measurements despite
oiling conditions. As an alternative to existing level measurement
olutions, external, digital imaging based level monitoring can be
onsidered [35].

.3. Process safety by design and feedback control

Often, process disturbances are handled during the design phase
y increasing the size of the equipment. The same strategy is used
o account for the uncertainties of correlations and model param-
ters which influence equipment sizing. Another safe alternative is
o use high filling degree and set the base case recipe so that dis-
urbances do not cause safety problems [36]. Although inherently
afe, these practices lead to solutions which decrease the process
erformance, usually the productivity, as the material throughput

s decreased. The level disturbance can also be handled by decreas-
ng the filling level in the reactor. More exactly, for a 6.3 m3 reactor

hich has a nominal height of 2 m, decreasing the filling height
y 0.5 m, the liquid volume is decreased by 25%. Advanced con-
rol solutions can help to provide safe operation and to improve
roductivity, in this case by filling more liquid. Nevertheless, the

mplementation of advanced control loops in industrial environ-

ents requires not only performant process models and solvers,

ut also the integration with existing actuators, and last but not
east skilled man power to ensure deployment and maintenance.
hus, the costs related to the implementation of advanced control
olutions need to be balanced against the productivity benefits.
g Journal 153 (2009) 151–158 157

Related to the modeling simplifications, it is concluded that,
assuming fixed batch time, the yield of the reaction might change
due to the different pressure profiles which affect the liquid–vapor
equilibrium (VLE), the component D hold-up and the reverse reac-
tion rates. As the model does not contain the pressure influence
on the liquid hold-up of component D, it is not feasible to quan-
tify the effect of pressure profile change, since VLE calculations are
not performed. Uncertainties of the chemical equilibrium constants
and the assumption that in large-scale industrial reactors the entire
liquid mass is in equilibrium with the gas phase pose further mod-
eling difficulties. In such cases, to model the phase transition, it is
customary to postulate rate-based models which do not assume
equilibrium.

5. Conclusions

The paper presents an on-line optimizing batch process con-
trol strategy with respect to excessive liquid rise. The on-line
strategy is required to accommodate the reaction rate distur-
bances which arise due to catalyst dosing uncertainties (variations
in catalyst mass and feeding time). The control simulations are
carried out using a dedicated NMPC and optimization software
toolbox OptCon which implements state of the art technologies.
The open-loop optimal control problem is computed using the
multiple-shooting technique and the arising nonlinear program-
ming problem is solved using a sequential quadratic programming
(SQP) algorithm tailored for large-scale problems, based on the free-
ware optimization environment HQP. The fast response of the NMPC
controller is guaranteed by the initial value embedding and real-
time iteration technologies. This efficient NMPC scheme allows the
implementation of control actions with small sampling time, which
is an important aspect in this application, which may exhibit very
rapid rise in level due to swelling. The simulation results obtained
using the model fitted to industrial experimental data indicate that
the on-line model based control is able to keep the reactor level
within safety operation constraints, without causing excessive liq-
uid swelling or sub-optimal operation even in the case of significant
deviations from the master recipe. Further process optimization
strategies may include on-line recipe adjustment scenarios, in this
case, by re-optimizing the catalyst dosing time and mass.
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